Multiparty Differential Privacy via Aggregation of Locally Trained Classifiers
نویسندگان
چکیده
As increasing amounts of sensitive personal information finds its way into data repositories, it is important to develop analysis mechanisms that can derive aggregate information from these repositories without revealing information about individual data instances. Though the differential privacy model provides a framework to analyze such mechanisms for databases belonging to a single party, this framework has not yet been considered in a multi-party setting. In this paper, we propose a privacy-preserving protocol for composing a differentially private aggregate classifier using classifiers trained locally by separate mutually untrusting parties. The protocol allows these parties to interact with an untrusted curator to construct additive shares of a perturbed aggregate classifier. We also present a detailed theoretical analysis containing a proof of differential privacy of the perturbed aggregate classifier and a bound on the excess risk introduced by the perturbation. We verify the bound with an experimental evaluation on a real dataset.
منابع مشابه
Privacy Preserving Techniques for Speech Processing
Speech is perhaps the most private form of personal communication but current speech processing techniques are not designed to preserve the privacy of the speaker and require complete access to the speech recording. We propose to develop techniques for speech processing which do preserve privacy. While our proposed methods can be applied to a variety of speech processing problems and also gener...
متن کاملA Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification
We consider the problem of developing privacypreserving machine learning algorithms in a distributed multiparty setting. Here different parties own different parts of a data set, and the goal is to learn a classifier from the entire data set without any party revealing any information about the individual data points it owns. Pathak et al [7] recently proposed a solution to this problem in whic...
متن کاملLearning privately from multiparty data
Learning a classifier from private data collected by multiple parties is an important problem that has many potential applications. How can we build an accurate and differentially private global classifier by combining locally-trained classifiers from different parties, without access to any party’s private data? We propose to transfer the ‘knowledge’ of the local classifier ensemble by first c...
متن کاملOptimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging
We study a method of optimal data-driven aggregation of classifiers in a convex combination and establish tight upper bounds on its excess risk with respect to a convex loss function under the assumption that the solution of optimal aggregation problem is sparse. We use a boosting type algorithm of optimal aggregation to develop aggregate classifiers of activation patterns in fMRI based on loca...
متن کاملPrivate Data Aggregation on a Budget
We provide a practical solution to performing cross-user machine learning through aggregation on a sensitive dataset distributed among privacy-concerned users. We focus on a scenario in which a single company wishes to obtain the distribution of aggregate features, while ensuring a high level of privacy for the users. We are interested in the case where users own devices that are not necessaril...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010